点击右上角微信好友

朋友圈

请使用浏览器分享功能进行分享

正在阅读:大众彩票规则-互动百科
首页>文化频道>要闻>正文

大众彩票规则-互动百科

来源:大众彩票平台2023-09-15 17:48

  

大众彩票规则

吉林新年“绿意盎然”:冬季农博会展示中外农业风情******

  (新春走基层)吉林新年“绿意盎然”:冬季农博会展示中外农业风情

  中新网长春1月12日电 (谭伟旗)12日的长春农博园热闹非凡,园内的特色植物、珍稀动物各具风采。置身其中,让人仿佛忘记了此刻正是中国北方的寒冬时节。

  第十三届吉林(长春)冬季农业博览会当天开幕,20万平方米的展示区域,安排了设施农业、观光农业、农业科技成果转化、新春年货展销等展区,既具科技感,又“年味儿”十足。

长春农博园内的植物景观 谭伟旗 摄长春农博园内的植物景观 谭伟旗 摄

  作为中国的农业大省,吉林在设施农业发展方面不断取得新突破。长春农博园6万平方米的连栋智能温室里,重点展示了高新无土栽培、规模化无土栽培、基质栽培技术、热带果树园、鲜切花卉园、沙漠植物园、植物工厂等特色农业技术和成果。

  室外,两栋不加温温室展示了北方冬季温室不供暖进行叶菜及果蔬生产,高效节能环保,成为北方现代农业模板。

长春农博园内展示的无土栽培技术 谭伟旗 摄长春农博园内展示的无土栽培技术 谭伟旗 摄

  世界农业风情园一直都有着火热的人气。园内划分亚洲、欧洲、美洲、非洲、大洋洲等五大洲农业风情区域,共推出300多种极具代表性的特色植物,形象生动地呈现了世界各地风格迥异的农业文明。

  植物之外,珍禽园里的孔雀、鹦鹉等40多种动物也都极具观赏性;各类淡水鱼、海水鱼、观赏鱼、水母及趣味海洋动物在渔业展馆内尽情畅游。

  长春市政府副秘书长孟宪新表示,由长春市政府主办的吉林(长春)冬季农博会,已成功举办了十二届,以其独特的魅力和展示形式,丰富了广大市民和农民群众春节期间的文化生活,成为吉林长春冬季冰雪旅游和冰雪文化的重要品牌。

  孟宪新介绍,本届展会集农业品牌展示、现代农业观光、新春年货采购、节庆文化活动于一体,能够让更多的游客在浓郁的年味中领略北国春城的独特魅力,尽享长春现代农业发展带来的丰硕成果。(完)

                                                                          • 诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?******

                                                                              相比起今年诺贝尔生理学或医学奖、物理学奖的高冷,今年诺贝尔化学奖其实是相当接地气了。

                                                                              你或身边人正在用的某些药物,很有可能就来自他们的贡献。

                                                                            诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

                                                                              2022 年诺贝尔化学奖因「点击化学和生物正交化学」而共同授予美国化学家卡罗琳·贝尔托西、丹麦化学家莫滕·梅尔达、美国化学家巴里·夏普莱斯(第5位两次获得诺贝尔奖的科学家)。

                                                                              一、夏普莱斯:两次获得诺贝尔化学奖

                                                                              2001年,巴里·夏普莱斯因为「手性催化氧化反应[1] [2] [3]」获得诺贝尔化学奖,对药物合成(以及香料等领域)做出了巨大贡献。

                                                                              今年,他第二次获奖的「点击化学」,同样与药物合成有关。

                                                                              1998年,已经是手性催化领军人物的夏普莱斯,发现了传统生物药物合成的一个弊端。

                                                                            诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

                                                                              过去200年,人们主要在自然界植物、动物,以及微生物中能寻找能发挥药物作用的成分,然后尽可能地人工构建相同分子,以用作药物。

                                                                              虽然相关药物的工业化,让现代医学取得了巨大的成功。然而随着所需分子越来越复杂,人工构建的难度也在指数级地上升。

                                                                              虽然有的化学家,的确能够在实验室构造出令人惊叹的分子,但要实现工业化几乎不可能。

                                                                              有机催化是一个复杂的过程,涉及到诸多的步骤。

                                                                              任何一个步骤都可能产生或多或少的副产品。在实验过程中,必须不断耗费成本去去除这些副产品。

                                                                              不仅成本高,这还是一个极其费时的过程,甚至最后可能还得不到理想的产物。

                                                                              为了解决这些问题,夏普莱斯凭借过人智慧,提出了「点击化学(Click chemistry)」的概念[4]。

                                                                              点击化学的确定也并非一蹴而就的,经过三年的沉淀,到了2001年,获得诺奖的这一年,夏普莱斯团队才完善了「点击化学」。

                                                                              点击化学又被称为“链接化学”,实质上是通过链接各种小分子,来合成复杂的大分子。

                                                                              夏普莱斯之所以有这样的构想,其实也是来自大自然的启发。

                                                                              大自然就像一个有着神奇能力的化学家,它通过少数的单体小构件,合成丰富多样的复杂化合物。

                                                                              大自然创造分子的多样性是远远超过人类的,她总是会用一些精巧的催化剂,利用复杂的反应完成合成过程,人类的技术比起来,实在是太粗糙简单了。

                                                                              大自然的一些催化过程,人类几乎是不可能完成的。

                                                                              一些药物研发,到了最后却破产了,恰恰是卡在了大自然设下的巨大陷阱中。

                                                                               夏普莱斯不禁在想,既然大自然创造的难度,人类无法逾越,为什么不还给大自然,我们跳过这个步骤呢?

                                                                              大自然有的是不需要从头构建C-C键,以及不需要重组起始材料和中间体。

                                                                              在对大型化合物做加法时,这些C-C键的构建可能十分困难。但直接用大自然现有的,找到一个办法把它们拼接起来,同样可以构建复杂的化合物。

                                                                              其实这种方法,就像搭积木或搭乐高一样,先组装好固定的模块(甚至点击化学可能不需要自己组装模块,直接用大自然现成的),然后再想一个方法把模块拼接起来。

                                                                              诺贝尔平台给三位化学家的配图,可谓是形象生动[5] [6]:

                                                                            诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

                                                                              夏普莱斯从碳-杂原子键上获得启发,构想出了碳-杂原子键(C-X-C)为基础的合成方法。

                                                                              他的最终目标,是开发一套能不断扩展的模块,这些模块具有高选择性,在小型和大型应用中都能稳定可靠地工作。

                                                                              「点击化学」的工作,建立在严格的实验标准上:

                                                                              反应必须是模块化,应用范围广泛

                                                                              具有非常高的产量

                                                                              仅生成无害的副产品

                                                                              反应有很强的立体选择性

                                                                              反应条件简单(理想情况下,应该对氧气和水不敏感)

                                                                              原料和试剂易于获得

                                                                              不使用溶剂或在良性溶剂中进行(最好是水),且容易移除

                                                                              可简单分离,或者使用结晶或蒸馏等非色谱方法,且产物在生理条件下稳定

                                                                              反应需高热力学驱动力(>84kJ/mol)

                                                                              符合原子经济

                                                                              夏尔普莱斯总结归纳了大量碳-杂原子,并在2002年的一篇论文[7]中指出,叠氮化物和炔烃之间的铜催化反应是能在水中进行的可靠反应,化学家可以利用这个反应,轻松地连接不同的分子。

                                                                              他认为这个反应的潜力是巨大的,可在医药领域发挥巨大作用。

                                                                              二、梅尔达尔:筛选可用药物

                                                                              夏尔普莱斯的直觉是多么地敏锐,在他发表这篇论文的这一年,另外一位化学家在这方面有了关键性的发现。

                                                                              他就是莫滕·梅尔达尔。

                                                                            诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

                                                                              梅尔达尔在叠氮化物和炔烃反应的研究发现之前,其实与“点击化学”并没有直接的联系。他反而是一个在“传统”药物研发上,走得很深的一位科学家。

                                                                              为了寻找潜在药物及相关方法,他构建了巨大的分子库,囊括了数十万种不同的化合物。

                                                                              他日积月累地不断筛选,意图筛选出可用的药物。

                                                                              在一次利用铜离子催化炔与酰基卤化物反应时,发生了意外,炔与酰基卤化物分子的错误端(叠氮)发生了反应,成了一个环状结构——三唑。

                                                                              三唑是各类药品、染料,以及农业化学品关键成分的化学构件。过去的研发,生产三唑的过程中,总是会产生大量的副产品。而这个意外过程,在铜离子的控制下,竟然没有副产品产生。

                                                                              2002年,梅尔达尔发表了相关论文。

                                                                              夏尔普莱斯和梅尔达尔也正式在“点击化学”领域交汇,并促使铜催化的叠氮-炔基Husigen环加成反应(Copper-Catalyzed Azide–Alkyne Cycloaddition),成为了医药生物领域应用最为广泛的点击化学反应。

                                                                            诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

                                                                              三、贝尔托齐西:把点击化学运用在人体内

                                                                              不过,把点击化学进一步升华的却是美国科学家——卡罗琳·贝尔托西。

                                                                            诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

                                                                              虽然诺奖三人平分,但不难发现,卡罗琳·贝尔托西排在首位,在“点击化学”构图中,她也在C位。

                                                                              诺贝尔化学奖颁奖时,也提到,她把点击化学带到了一个新的维度。

                                                                              她解决了一个十分关键的问题,把“点击化学”运用到人体之内,这个运用也完全超出创始人夏尔普莱斯意料之外的。

                                                                              这便是所谓的生物正交反应,即活细胞化学修饰,在生物体内不干扰自身生化反应而进行的化学反应。

                                                                              卡罗琳·贝尔托西打开生物正交反应这扇大门,其实最开始也和“点击化学”无关。

                                                                              20世纪90年代,随着分子生物学的爆发式发展,基因和蛋白质地图的绘制正在全球范围内如火如荼地进行。

                                                                              然而位于蛋白质和细胞表面,发挥着重要作用的聚糖,在当时却没有工具用来分析。

                                                                              当时,卡罗琳·贝尔托西意图绘制一种能将免疫细胞吸引到淋巴结的聚糖图谱,但仅仅为了掌握多聚糖的功能就用了整整四年的时间。

                                                                              后来,受到一位德国科学家的启发,她打算在聚糖上面添加可识别的化学手柄来识别它们的结构。

                                                                              由于要在人体中反应且不影响人体,所以这种手柄必须对所有的东西都不敏感,不与细胞内的任何其他物质发生反应。

                                                                              经过翻阅大量文献,卡罗琳·贝尔托西最终找到了最佳的化学手柄。

                                                                              巧合是,这个最佳化学手柄,正是一种叠氮化物,点击化学的灵魂。通过叠氮化物把荧光物质与细胞聚糖结合起来,便可以很好地分析聚糖的结构。

                                                                              虽然贝尔托西的研究成果已经是划时代的,但她依旧不满意,因为叠氮化物的反应速度很不够理想。

                                                                              就在这时,她注意到了巴里·夏普莱斯和莫滕·梅尔达尔的点击化学反应。

                                                                              她发现铜离子可以加快荧光物质的结合速度,但铜离子对生物体却有很大毒性,她必须想到一个没有铜离子参与,还能加快反应速度的方式。

                                                                              大量翻阅文献后,贝尔托西惊讶地发现,早在1961年,就有研究发现当炔被强迫形成一个环状化学结构后,与叠氮化物便会以爆炸式地进行反应。

                                                                            诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

                                                                              2004年,她正式确立无铜点击化学反应(又被称为应变促进叠氮-炔化物环加成),由此成为点击化学的重大里程碑事件。

                                                                            诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

                                                                              贝尔托西不仅绘制了相应的细胞聚糖图谱,更是运用到了肿瘤领域。

                                                                              在肿瘤的表面会形成聚糖,从而可以保护肿瘤不受免疫系统的伤害。贝尔托西团队利用生物正交反应,发明了一种专门针对肿瘤聚糖的药物。这种药物进入人体后,会靶向破坏肿瘤聚糖,从而激活人体免疫保护。

                                                                              目前该药物正在晚期癌症病人身上进行临床试验。

                                                                              不难发现,虽然「点击化学」和「生物正交化学」的翻译,看起来很晦涩难懂,但其实背后是很朴素的原理。一个是如同卡扣般的拼接,一个是可以直接在人体内的运用。

                                                                            「  点击化学」和「生物正交化学」都还是一个很年轻的领域,或许对人类未来还有更加深远的影响。(宋云江)

                                                                              参考

                                                                              https://www.nobelprize.org/prizes/chemistry/2001/press-release/

                                                                              Pfenninger, A. Asymmetric Epoxidation of Allylic Alcohols: The Sharpless Epoxidation[J]. Synthesis, 1986, 1986(02):89-116.

                                                                              Rao A S . Addition Reactions with Formation of Carbon–Oxygen Bonds: (i) General Methods of Epoxidation - ScienceDirect[J]. Comprehensive Organic Synthesis, 1991, 7:357-387.

                                                                              Kolb HC, Finn MG, Sharpless KB. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl. 2001 Jun 1;40(11):2004-2021.

                                                                              https://www.nobelprize.org/uploads/2022/10/popular-chemistryprize2022.pdf

                                                                              https://www.nobelprize.org/uploads/2022/10/advanced-chemistryprize2022.pdf

                                                                              Demko ZP, Sharpless KB. A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: synthesis of 5-acyltetrazoles from azides and acyl cyanides. Angew Chem Int Ed Engl. 2002 Jun 17;41(12):2113-6. PMID: 19746613.

                                                                              (文图:赵筱尘 巫邓炎)

                                                                            [责编:天天中]
                                                                            阅读剩余全文(

                                                                            相关阅读

                                                                            推荐阅读
                                                                            大众彩票攻略巨人网络任命聂志明为CTO 成立人工智能实验室
                                                                            2024-07-07
                                                                            大众彩票下载app 272名工作人员被累死!印尼大选1.93亿选票全靠人工数
                                                                            2024-07-18
                                                                            大众彩票计划群仲为国:从马云回应996看企业发展挑战
                                                                            2024-07-13
                                                                            大众彩票官网平台 31岁男子用假驾照被罚 父母质问交警:他还是个孩子啊
                                                                            2024-01-26
                                                                            大众彩票骗局 31岁男子用假驾照被罚 父母质问交警:他还是个孩子啊
                                                                            2024-05-29
                                                                            大众彩票交流群丹帝独尊:废材觉醒成天骄
                                                                            2024-04-23
                                                                            大众彩票网投 老师叫家长们签字,这位爸爸不走寻常路画起了漫画
                                                                            2024-01-14
                                                                            大众彩票投注伍兹今夜注定有一宿命被打破
                                                                            2024-08-09
                                                                            大众彩票计划墨尔本维多利亚美术馆
                                                                            2024-04-21
                                                                            大众彩票走势图“谁去大兴”有变化,东航京沪快线留在首都机场
                                                                            2024-04-15
                                                                            大众彩票注册网刘邦成就大事业的终极手段
                                                                            2024-06-24
                                                                            大众彩票玩法重庆成台资西移投资“洼地” 2021年新增台企逾四成
                                                                            2024-04-21
                                                                            大众彩票赔率 谁是游戏版号开闸最大受益者
                                                                            2024-07-09
                                                                            大众彩票软件 百亿营收国企广物控股将和商贸控股合并,曾被巡视组点名整改
                                                                            2024-06-05
                                                                            大众彩票漏洞江西归侨少数民族聚居村年味浓 特色风情引客来
                                                                            2024-08-23
                                                                            大众彩票开奖结果造车新势力迎新玩家:首钢注资9.5亿元进军新能源
                                                                            2024-02-21
                                                                            大众彩票官网网址8种情况须尽早进行肺移植
                                                                            2024-08-21
                                                                            大众彩票必赚方案吉利星越5月上市曝顶配售17.78万
                                                                            2024-09-12
                                                                            大众彩票返点网易传媒:打造内容消费升级新生态
                                                                            2024-07-03
                                                                            大众彩票开户 倪妮靠金色连衣裙美出新高度
                                                                            2024-01-10
                                                                            大众彩票娱乐12天11板股价疯涨199% “大妖股”兴齐眼药底气何来
                                                                            2024-09-10
                                                                            大众彩票下载戴森V11干掉扫地机器人
                                                                            2023-12-20
                                                                            大众彩票官方12名僧人获得"格西拉让巴"藏传佛教最高学位
                                                                            2024-10-07
                                                                            大众彩票登录航拍韶关茶园 春季茶农采茶忙
                                                                            2024-07-06
                                                                            加载更多
                                                                            大众彩票地图